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ABSTRACT 

 The surface-to-surface contact algorithm has been proposed to overcome the 

drawbacks of node-to-surface algorithm in finite element method implementations. In 

the surface-to-surface algorithm, contact constraints are imposed between 

sub-elements rather than between nodes, and an auxiliary plane for each element is 

introduced to perform overlapping area detection. This work presents a combination 

of the surface-to-surface algorithm and the boundary face method (BFM) for solving 

contact problems in three dimensions. The BFM is based on boundary integral 

equation and is a truly isogeometric method, as it makes direct use of the geometric 

information of the bounding surface of a body. Apparently, the BFM is more suitable 

for solving contact problems. In our implementation, the auxiliary plane is no more 

necessary, but replaced by the boundary faces themselves which already exist in the 

BFM data structure. Our implementation is natural and can more precisely match the 

contact conditions between faces, and therefore, higher level of accuracy can be 

expected. Numerical examples presented have demonstrated the advantages of the 

combined method. 

Keywords: contact problems; surface-to-surface; boundary face method.  



1. Introduction 

 Boundary value problems involving contact are of great importance in industry 

related to mechanical and civil engineering, and have been the subject of research for 

many years. The first satisfactory analysis in theory was made by Hertz [1] in 1882. 

Although many efforts [2, 3] were devoted to the analytical studies later, the solution 

is still limited to simple cases of geometry, load and boundary conditions. These 

limitations have motivated the development of numerical methods to solve the 

problem. The first numerical algorithm, known as node-to-node (NTN), imposes 

contact constraints between pairs of nodes. This algorithm can be found in Francavilla 

and Zienkiewicz [4] and Fredriksson [5] for finite element method (FEM) and in 

Andersson et al. [6] and París and Garrido [7] for boundary element method (BEM). 

 In the contact zone, the conforming discretization is required for NTN. This 

requirement is not an acceptable strategy of solution in some situation [8]. Thus, a 

non-conforming discretization method called node-to-surface approach was proposed 

later. In this approach, the closest point pair is applied to impose the contact 

constraints, so that nodes on one side of contact surfaces should be projected onto the 

opposite surface to obtain the information of the closest point. Nowadays the 

node-to-surface approach based on FEM[9-11] and BEM[12-14] has been widely 

used in contact modelling.  

 However, the node-to-surface approach presents some drawbacks both in FEM 

and BEM. In FEM an ad-hoc post-processing scheme is needed to recover the contact 

pressure, since the contact virtual work is evaluated by the contact force rather than 

contact pressure. And the accuracy of the resulting contact pressure is also open to 

question [15]. To overcome this drawback, the surface-to-surface approach (or 

segment-to-segment in 2D) has been proposed in [16]. The main feature of the 

approach is the imposition of contact constraints in a weak integral sense along the 

contact surface, instead of a strong, pointwise enforcement as in node-to-surface 

approach. Besides, the traction is included explicitly in the contact integral, so that the 

ad-hoc post-processing is no more necessary. Moreover, the contact patch test [17] is 

passed using the surface-to-surface approach. Now, in finite element the 



surface-to-surface approach has been extended to more general problem of contact 

and impact interactions coupled with mortar method, see e.g.[18-21]. On the other 

hand, a jump in contact stress [22] has been found for two dimensional contact 

problems in BEM when adopting the node-to-surface approach. To remedy the 

problem, a weak application of contact conditions [23] was proposed. In fact, the 

method in [23] can be interpreted as a kind of surface-to-surface approach, because 

the contact constraints are imposed in a weak integral manner. 

 So far, the surface-to-surface approach was only implemented for 

two-dimensional contact problems in BEM. In this paper we extend the approach to 

three-dimensional frictionless contact problem based on the boundary face method 

(BFM) [24]. The rest of this article is organized as follows: In Section 2, we introduce 

the discrete forms of the contact constraint definitions. Section 3 presents the 

boundary integral equation and the feature of BFM.  Section 4 will discuss the 

essential difference between the node-to-surface approach and surface-to-surface 

approach. Numerical examples are presented to illustrate the advantages of our 

method in Section 5. Finally, the paper ends with conclusions in Section 6. 

2.Contact definitions 

 Consider two bodies occupying domains AD , BD and the boundary of two bodies 

are represented by 
AS and BS , respectively, with reference to a fixed Cartesian 

coordinate systemOxyz  (see Fig.1). The boundary of each body can be decomposed 

into two mutually disjoint sub-regions, i.e., 

, ( , )K K K
C NS S S K A B   

where on K
CS  the two bodies come into contact, while on K

NS contact does not occur. 

Similarly, the K
NS of each body can be decomposed into two mutually disjoint 

sub-regions K
NUS  and 

K
NTS  according to the prescribed boundary conditions. Here 

, ( , )K K K
N NU NTS S S K A B   



where the displacements are known on K
NUS , and the stress vectors are known on 

K
NTS . 

 

Fig.1. Problem definition 

 In BEM for non-conforming discretization, mutual projection should be 

performed between the two contact surfaces, so that the normal gap can be obtained. 

The typical normal gap is determined by the signed closest point distance. However, 

if the closest point projection is adopted for both the two contact surfaces, a 

asymmetry of projection [25] will occur. For the sake of simplicity, a 

two-dimensional contact case is illustrated in Fig.2, but the considerations below can 

be directly applied to the three-dimensional case.  

 As seen in Fig.2, the closest point for m is q, while the closest point for q is r. As 

a result, the normal gap between m and q is not equal to that between q and r. Besides, 

when using the node-to-surface approach to enforce the contact constraints, the 

traction (or displacement) constraints will be imposed between m and q and the 

displacement (or traction) constraints will be imposed between q and r. This is 

non-physical because the contact constraints should not be defined through three 

points. Thus, the closest point method is not reasonable to define the normal gap for 

both the two contact surfaces. To overcome the issue, we define the normal gap by 

closest point projection for one contact surface (from m to q), while another normal 

gap is calculate by the distance from q to the intersection(m). The m is determined by 

the intersection of a line, through q and parallel to the normal vector of q, and the 

contact surface of body A. 



 
Fig.2. Closest point projection 

Using this method, the contact constraints can be defined between closest point pair 

and constraints for nodes in the potential contact zone can be stated as following: 

1 1 1 1( ) ( ) 0A Bg u x u x                           (1) 

1 1 1( ) ( ) 0A Bp t x t x                            (2) 

1 1 0p g                                (3) 

where 1g  is the normal contact gap, 1  is the initial normal distance between the 

closest point pair and 1p  is the contact pressure. The direction 1 is refer to the 

direction from m to q. 

3. Boundary integral equation 

3.1.Boundary integral formulation 

 In absence of body force, the boundary integral equation can be written in the 

following form for each body 

( ) ( , ) ( ) ( ) ( , ) ( ) ( )

, 1, 2,3 ,

ij j ij j ij jS S
C u P T P Q u Q dS Q U P Q t Q dS Q

i j P Q S

 

 
         (4) 

where ( )ju Q  and ( )jt Q  are the displacements and stress vectors of points on the 

boundary; ijC  is the coefficient matrix of the free term; ( , )ijT P Q  and ( , )ijU P Q  

represent the Kelvin fundamental solutions for stresses and displacements. These 



tensors, for three-dimensional case, can be expressed as following  

, , , ,2

1
( , ) [ ((1 2 ) 3 ) (1 2 )( )]

8 (1 )ij ij i j j i i j

r
T P Q r r n r n r

r n
  

 


     
 

        (5) 

, ,
1

( , ) [(3 4 ) ]
16 (1 )ij ij i jU P Q r r

G r
 

 
  


                  (6) 

In the above equations, G  and v  are elastic constant of the body; r  is the 

distance form points P  to Q  and n  denotes the outward normal vector at point 

Q . 

3.2.Feature of BFM 

 The BFM proposed by Zhang [24] is also based on the boundary integral equation. 

In BFM, however, the geometric data (coordinates, Jacobian and outward normal) are 

calculated directly from the boundary faces, which are represented in parametric form 

exactly as the boundary representation data structure in solid modeling. For 

convenience, the Fig.3 is employed to illustrate the features.  

 In conventional BEM/FEM, a unique outward normal is no longer valid for linear 

element after discretization. For example, the outward normal at node P between the 

elements SP

1
P and SP

2 
Pis not unique as shown in Fig.3(b). So a jump in contact force will 

appear at node P. To keep a continuous and unique outward normal at node, a 

weighted average of the outward normal vectors on the two adjacent elements which 

share the node P is defined in [18]. 

 

(a) BFM                         (b) BEM/FEM 

Fig.3. Definition of outward normal in BFM and BEM/FEM 

However, in BFM not only the uniqueness but also the continuity are valid for the 



outward normal at node. Besides, when using linear discretization the curve can be 

represented exactly using elements SP

1 
Pand SP

2
P (see Fig.3(a)), while in BEM/FEM the 

curve is approximated by two straight line elements as in Fig.3(b). In a word, no 

geometric error will be introduced in BFM, which is a truly isogeometric method [26]. 

Work based on the BFM can be found in references [27-30]. 

4.Contact constraints method 

 For any point in non-contact zone, there exist three unknown variables and three 

integral equations ( Eqn.(4) for 1,2,3i  ) can be obtained. Nevertheless, for any 

point in the contact zone, there exist six unknown variables and only three integral 

equations can be established. To make the system equation solvable, contact 

constraints have to be enforced. Two methods to enforce contact constraints for 

non-conforming discretization are discussed below. 

4.1.Node-to-surface approach 

 In this method, the equilibrium is only forced at nodes of one body and the 

compatibility is forced at nodes of the other body. As shown in Fig.4, the traction of 

body B is represented by the traction shape function of body A. Similarly, the 

displacement of body A is represented by the displacement shape function of body B. 

In short, body A controls the tractions and body B controls the displacements. 

Therefore, contact constraints for the frictionless problem can be written as following: 

 

Fig.4.The node-to-surface contact model 

 Equilibrium condition for nodes in the contact zone of body B 



4
,

1 1
1

( , ) k AB
k

k
t t 


 N                                                         (7) 

 Compatibility of normal displacements for nodes in the contact zone of body A 

4
,

1 1 1
1

( , ) k BA
k

k
u u  


 N                                                     (8) 

 Frictionless condition for nodes in contact zone 

 2 3 2 3
A A B Bt t t t                              (9) 

where N is shape function. The direction 1 is the same as that in Eqn.(1) and the 

direction 2 and 3 are taken in any position in the plane perpendicular to the direction 

1. 

 As we know, the forces transmitted through 
B
CS is equal, i.e., 

1 1( ) 0B
C

B A
S    t t                           (10) 

and the compatibility of normal displacements in contact zone A
CS  can be written as 

111( ) 0A
C

BA
S     uu                                                      (11) 

For node-to-surface approach, the Eqn.(7) can be obtained from Eqn.(10) using 

collocation at nodes in B
CS . Similarly, the Eqn.(8) can be obtained from Eqn.(11). 

Thus, the equilibrium and compatibility conditions are only forced at nodes. 

4.2. Surface-to-surface approach 

 Unlike collocation method, the Galerkin method is adopted for computing the 

integral Eqn.(10) and (11) in this method. Then the equilibrium condition on B
CS  can 

be written as 

1 1( ) ( ) 0kB kB
C C

NCB NCB
kB T kB kB kB T A A

k k
S S    N N t N N t         (12) 

and the compatibility condition on A
CS  can be written as 

1 1 1( ) ( ) ( ) 0kA kA kA
C C C

NCA NCA NCA
kA T kA kA kA T kA kA kA T B B

k k k
SS S      u uN N N N N N



(13) 

where NCB and NCA are the number of element on contact zone B
CS  and A

CS  

respectively, and the HTsuperscriptTH k is the index of element on which the integral is 

performed. Since the contact constraints are imposed in a weak integral manner, the 

global equilibrium and compatibility conditions can be guaranteed. 

 The integral of the above equations need to be calculated separately. The 

computation of the integrals that multiply to 1
kBt , 1

kAu and 1
kA  is easy, due to the 

fact that only shape function and element Jacobian should be considered. However, 

the calculation of G, the second item of Eqn.(12), depends on the overlapping area 

between the element k of body B and element of body A. Thus, a projection of 

element from body B onto body A is required. Meanwhile, the calculation of M, the 

last item of Eqn.(13), also need a projection of element from body A onto body B.  

1( )kB
C

NCB
kB T A A

k
S  G N N t                     (14) 

1( )kA
C

NCA
kA T B B

k
S  M uN N                    (15) 

If a mutually projection of the element is performed, the cost of overlapping area 

detection will be double. This is not a good strategy. In fact, there exists a common 

contact zone (overlapping area) which can be used for the integrals mentioned above. 

To compute the integrals, the surface-to-surface algorithm (Fig.5) will be introduced 

below. 

The surface-to-surface algorithm 

1. Project all element nodes of one contact surface (slaver) onto the boundary face 

(already existing in the BFM data structure) of the opposite surface (master). 

2. Using a clipping algorithm [31] to find the overlapping area (common contact zone) 

of projected slave and master element on the boundary face. 

3. Locate geometric center of polygon and divide polygon into triangular 

sub-elements which will be used for numerical integration. 



4. Define integration point with coordinate g  on master integration sub-elements 

and find the corresponding integration point (1)
g  on the slave element by an inverse 

projection. 

5.Perform numerical integration for G and M on all integration sub-elements. 

 

Fig.5. Main step of the surface-to-surface integration scheme 

 A similar integration scheme using FEM can be found in [19,20]. In [20] the 

integration scheme is called segment-based integration, and an auxiliary plane should 

be introduced since all element nodes need to be projected onto it to detect 

overlapping area. However, this is not needed for BFM because the boundary face, 

already existing in the BFM data structure, can replace the auxiliary plane (see [24]). 

 In non-conforming discretization, the contact zone A
CS  is not always equal to the 

contact zone B
CS after discretization. Thus, the integral region of G and M should be 

noted. For simplicity, a two-dimensional case is shown as below 

 

Fig.6. Contact zone of contact surfaces 



 In Fig.6, the solid point denotes a contact node, while the hollow point denotes a 

non-contact node. Then the common contact zone CS  is equal to A
CS  which can be 

used for the calculation of G and M. However, the C C
B AS S  is only applied for the 

calculation of G. The rule is also applicable to the condition when the contact zone 

A
CS  is larger than B

CS . One way to avoid this problem is to combine the collocation 

method with Galerkin method, since only displacement (or traction) constraint is 

imposed in a weak integral manner. However, the combination is not the point of 

discussion in this paper. 

 Through the methods mentioned above, the system equation is determined. The 

solution procedures can be found in [32] where the node-to-surface combined with 

BFM has been implemented. As we know, only the boundary need to be discretized in 

BEM, which is also applicable to BFM. In this paper, linear quadrilateral elements are 

used to discretize the boundary of solids. 

5. Numerical examples 

 In this section, two examples without friction are studied. The first one is used for 

demonstrating the feasibility of our method. The second one is presented to illustrate 

the advantages of our method. Meanwhile, the results of finite element software 

ABAQUS 6.13 are employed for comparison. 

5.1. Hertzian contact 

 In Fig.7(a), a 3D Hertzian contact problem consisting of an elastic semi-cylinder 

(R=L=10, Young's modulus E=200 and Poisson's ration ν=0.3) and a rigid planar 

surface (not shown) is analyzed. A uniform pressure p=0.1 is applied to the top 

surface of the semi-cylinder. Analytical solutions for the contact pressure distribution 

can be characterized via the maximum normal contact pressure pRmax Rand the long strip 

of contact width 2a (see, e.g., [3]). For the given set of parameters, we obtain 

pRmaxR=3.74 and a=0.3404 as analytical values. The contact pressure in the cutting plane 

x=5 is plotted in Fig.8. The mesh in our method is shown in Fig.7(a), having 2,396 



linear quadrilateral elements. To obtain a accurate pressure  distributions, a refined 

mesh is used in the potential contact zone (see Fig.7 (b)). In ABAQUS, there are 

298,040 linear hexahedral elements (not shown), and the mesh size in the direction of 

x and circumferential are set to be 0.25 and 0.075, respectively. 

     

               (a) geometry and mesh                         (b) mesh in contact zone 

Fig.7. Mesh in our method 

 

Fig.8. Contact pressure 

 As seen in Fig.8, the results of our method and ABAQUS are almost coincident, 

except in the outermost part of the contact zone. Although there is some 



discrepancy between numerical and analytical solution, the relative error of the 

maximum pressure in our method (3.809) with respect to the analytical solution 

is1.85%.  

5.2. Compression of an elastic punch on foundation 

 An elastic punch is presented against a foundation as in Fig.9. The top face of the 

punch as well as the bottom face of foundation is a square with a length of 16mm. The 

uniform pressure p=300MPa is applied on the punch's top face. Both solids are 

defined with equal material parameters (Young’s modulus E=200GPa and Poisson’s 

ratio v=0.3). 

   

Fig.9. Elastic punch on foundation 

 In this example, the result in our method will be used to compare with that in 

other methods. Before comparison, a reference solution should be obtained. Thus, an 

ABAQUS model with three different mesh size (0.667mm, 0.4mm and 0.32mm) is 

adopted. In ABAQUS, both the punch and foundation are modelled with linear 

hexahedral element. Meanwhile, the surface-to-surface discretization method and 

finite-sliding formulation are used. The results of red line on the punch's contact 

surface (see Fig.9) are employed to analyze in all later figures. 



 

Fig.10. Contact pressure 

 

Fig.11. Displacement (Uz) 

 In Fig.10 and 11, the contact pressure and displacement of a1 (0.667mm), a2 

(0.4mm) and a3 (0.32mm) are exhibited. Among them, the results of a2 and a3 are 

coincident even having a different mesh size. That is to say, the result of a3 is stable 

and it can be used as a reference solution. The number of nodes and elements in a1, 

a2 and a3 are given in Table 1. 



Table 1. Number of nodes and elements in a1, a2 and a3 

 

5.2.1 Compared with ABAQUS 

 As shown in Fig.12(a), the mesh size of the punch and foundation are equal and 

the mesh size is 0.667mm, so that there yield 2,150 nodes and 1,920 elements on the 

punch, and 2,550 nodes and 2,304 elements on the foundation in our method. This 

model has been solved by our method and the results are plotted in Fig.13 and 14. In 

the figures, the results of a1 solved by ABAQUS are also plotted, since the mesh size 

in a1 (see Fig.12(b)) is the same as that in Fig.12(a). And only the contact pressure 

from -4.0mm to 4.0mm is plotted because the contact pressure in other part is always 

zero. 

  

(a) Our method                            (b) a1 

Fig.12. Mesh 



 

Fig.13. Contact pressure 

 

Fig.14. Displacement (Uz) 

 The contact pressure given in Fig.13 shows that our method has a better 

approximation of the reference solution a3, compared with a1. Nevertheless, the 

displacement exhibited in Fig.14 has some discrepancy. In the region from -2mm to 

2mm, our method still has a good approximation of the reference solution a3, but 

becomes worse when far away from the center. The relative error of the  

displacement, at y=8mm, in our method with respect to the reference solution is 

2.25%. The number of nodes and elements in a1 and a3 have been given in Table 1. 



5.2.2 Compared with the node-to-surface approach 

 In this example, the mesh sizes of the punch and foundation (see Fig.9) are 

0.667mm and 0.8mm, respectively. As a result, there yield 2,150 nodes and 1,920 

elements on the punch, and 1,806 nodes and 1,600 elements on the foundation. Both 

node-to-surface (combined with BFM) and our method (surface-to-surface combined 

with BFM) are used to solve this model and the results are plotted below.  

 

Fig.15. Contact pressure 

 

Fig.16. Displacement (Uz) 



 The contact pressure results in Fig.15 illustrate that our method is more close to 

the reference solution a3, compared with the node-to-surface (NTS) approach. 

Meanwhile, the displacement results in Fig.16 show that our method is still slightly 

better than NTS. That is to say, our method is more accurate than NTS. 

6.Conclusions 

 A surface-to-surface approach for three-dimensional frictionless contact problems 

has been studied by the boundary face method (BFM). The contact constraints 

integral equations are solved by Galerkin method rather than collocation method, so 

that the global equilibrium and compatibility conditions can be guaranteed. 

Meanwhile, the boundary face, already existing in BFM data structure, can replace the 

auxiliary plane, on which projection and overlapping area detection are performed. 

Therefore, our implementation is natural and can more precisely match the contact 

conditions between faces. Numerical examples show that the result of our method is 

encouraging and the result of surface-to-surface approach is more accurate than that 

of node-to-surface approach. 

 One disadvantage of the surface-to-surface approach is the cost of overlapping 

area detection for the contact constraints integral, but a more accurate solution can be 

obtained. To reduce the cost as much as possible, a reasonable potential contact zone 

is of great importance. If the potential contact zone is much larger than the final 

contact zone, the cost for the contact constraints integral in non-contact zone will be 

very expensive. Thus, a reasonable potential contact zone should be guaranteed. Our 

treatment is to combine node-to-surface approach with surface-to-surface approach. 

Firstly the node-to-surface approach is employed to solve the problem, and then a 

more reasonable potential contact zone can be obtained. With a more reasonable 

potential contact zone, the cost of surface-to-surface approach to find the final contact 

zone will decrease largely. 
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